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Dynamic methods of thermal processing for metals and alloys are widely used at present. 
Of special interest is the technology of thermal processing in rapidly occurring processes 
involving modern equipment such as lasers, explosives, etc. [i]. Such processes are char- 
acterized by the action of high pressure and temperature values on materials. Under such 
action various structural and phase transitions occur within the material under extremal 
heating and cooling conditions [2]. It thus becomes possible to produce materials with cer- 
tain desirable properties. In particular, metastable materials with an amorphous or finely 
dispersed structure have been produced [3]. 

Carrying out experimental studies on the principles of thermal processing at superhigh 
heating and cooling rates involves definite difficulties, and in some cases is simply not 
possible. A theoretical analysis of thermal processes usually leads to classical mathemati- 
cal models of thermal conductivity and Stefan-type problems [4]. However for satisfactory 
estimates of the quantitative and qualitative characteristics of material structure forma- 
tion it is necessary to consider the kinetics of new phase formation. 

The present study will carry out a numerical analysis of formation of amorphous and 
finely dispersed crystalline structures in thin surface layers of a melt during rapid cool- 
ing. 

A thin melted layer on the surface of a material can be obtained by the action of con- 
centrated energy fluxes [2]. A high cooling rate is achieved by heat removal into the depths 
of the cold substrate. The structure of the solidified melt depends on the dynamics of the 
temperature regime, the value of the cooling rate, and the thermophysical characteristics 
of the material. In fact, the kinetics of new crystalline phase formation in the super- 
cooled melt are determined by its viscosity and relaxation time, which increase with drop 
in temperature. 

The formation of a new phase brings about fluctuations or spontaneity as a function 
of the degree of supercooling. 

In the case of rapid supercooling of the melt the liquid phase is absolutely unstable 
and from the kinetic viewpoint spontaneous formation and growth of new phase nuclei is most 
probable. For spontaneous nucleus formation the size of the critical nucleus is of atomic 
order of magnitude, and change in the size of the new phase nucleus occurs due to combina- 
tion or detachment of individual atoms which overcome the potential barrier. The nucleus 
distribution function over size obeys the fundamental kinetic equation obtained under the 
condition that growth is accomplished solely by attachment of individual atoms through the 
potential barrier in an activated manner [5]. 

We will consider the process of cooling of a thin layer of melt in ideal contact with 
the cold substrate. The problem of the "composite wall" can be described by thermal pro- 
cesses of amorphous film production by modern technology (explosion of melted drops or 
spreading on a rapidly rotating drum, etc.). 

We take the mathematical formulation of the problem in the form 
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Here C, R, and X are the specific heat, density, and thermal conductivity of the wall material -- 
discontinuous functions (which are assumed piecewise-constant); L is the latent hea1~ of fu- 
sion; T* is the melt temperature; To is the substrate temperature; U is the activation energy 
for a single atom; v is the Debye frequency; k is the Stefan-Boltzmann constant; n* is the 
number of atoms on the nucleus surface; P• is the probability of attachment or detachment 
of an atom; r a is the atomic radius; N is the number of atoms in the system; f is the nucleus 

distribution function over size, normalized to unity J/dn=i; ~, ~ are kinetic coefficients; 
1 

dAF(n)/dn = -H(Tf - T(t))/Tf is the driving force of the process under spontaneous growth 

conditions; Tf is the fusion temperature; H is the phase transition enthalpy per atom; and 
AF is the change in free energy. 

Thermal conductivity equation (i) contains a kinematic term on its right side, which 
plays the role of a volume heat source during solidification of the melt. The initial tem- 
perature conditions of Eq. (2) have a discontinuity on the contact line x = AS, while for 
the distribution function in the equilibrium state we have Eq. (5). The boundary conditions 
of Eq. (3) for the thermal portion of the problem are taken with the assumption of thermal 
insulation of exterior surfaces of the wall. For the distribution function,f of Eq. (6) a 
natural condition is the absence of very large new formations as n + ~. Equation (7) defines 
a zero particle flux in size space at n = 1 [6]. 

For the numerical realization of the problem an implicit Krank-Nicholson difference 
scheme with discrete representation of the basic kinetic equation (4) was used: 

[(n, t +  A t ) -  [(n, t )= - - [ (n ,  t)At[P+(n, t)4:-P (n, t)] + 

-~-/(n q- l, t)P (n ~- 1, t)At -~ f(n -- l, t)P+(n -- i, OAt. 

We will consider the case of solidification of melted Fe with a temperature Tf = 2000~ 
and thickness AS = 20 ~m in contact with a cold (Fe) substrate. 

Figures 1 and 2 show characteristic temperature distributions and functions f in the 
composite wall at various times (lines 1-3 for i0 -6, 2.10 -6 , 5.10 -6 sec). The calculated 
values of the temperature fields show practically no differences from similar calculations 
performed for solutions by classical Stefan models. Since the temperature gradients over 
time dT/dt (cooling rates) reach values of 109-106 deg/sec, spontaneous generation of the 
new phase occurs and the chosen mathematical formulation is valid. 

265 



t(.) 
1,o 

0,5 

t ~  
4o 

2,0 

~.  - I 0  5 

. f  /ooo 15oo 2000 y.io 5 74o~ .9./0 5 

1 l 

Y 5- 

2 

210-4- ~ 
r 

[ I i 
~OOO qSO0 2000 

2"fO-Yj 5 

i i d 
2.fO 4 2,540 3'/0 4 

Fig. 3 

The change in structure of the solidifying melt can be traced from the behavior of the 
distribution function f(x, n, t). Figure 3a illustrates the form of f(x, n, t) at a fixed 
point in the melt x = i0 Dm at various times: t = 0, 2"10 -5 , 4"10 -5 sec (lines 1-3). Figure 
3b shows the distribution function at the specific time t = 2"10 -5 sec for the points x = i, 
i0, 20 pm (lines i-3). 

One should note the clearly expressed maximum in the behavior of f(x, n, t), the ampli- 
tude of which falls off rapidly with passage of time. For the mean nucleus size we take 
the value of the maximum of the distribution function at the time of "freezing" of the pro- 
cess of new phase formation. 

It is obvious that the distribution function at the moment of complete solidification 
of the melt determines the final size structure of the new phase nucleus. For a melt layer 
20 ~m thick the mean nucleus size (crystallite size in the solidified melt) comprises 5"106 
atoms, or 0.017 ~m assuming densely packed spherical grains. 

At present there is interest in thermal processing of material surfaces by concentrated 
energy fluxes [2]. Studies have shown that the solidified melt on the surface has a fine- 
grain or even amorphous structure. In this connection it is important to know the princi- 
ples of the process of surface cooling in order to control the structural transformations. 

We will consider the action of a thermal flux q on the surface of a material over a 
short time interval At, which insures melting of a surface layer without significant destruc- 
tion of material due to evaporation. In this case the process of melt cooling (see above) 
is preceded by a stage of surface heating which can be described mathematically by the clas- 
sical Stefan problem: 

c R  or or O < x < S ,  (8) 
ot = oz \ oz ] '  0 < t < A t ;  

- -  ~ = o = q ;  ( 9 )  

or I = O; (10)  
~ X  x = S  

rlt=o = To; ( 1 1 )  

R L  o~ 7 i  = [q] I~=~, Tlx=~ = T,  (12 )  

($ is the coordinate of the moving melt-solid phase boundary, T, is the equilibrium fusion 
temperature). 
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The solution of the problem of Eqs. (8)-(12) at the moment that the action of the thermal 
flux is completed t = At is then the initial temperature distribution for the subsequent 
problem of the "composite wall," Eqs. (1)-(7). 

Figure 4a, b shows characteristic temperature distributions and functions f for action 
of a thermal flux of q = i06 W/cm 2 over a period t = 9 psec (notation as in Figs. 1 and 2). 
The resultant property dependence differs slightly from that considered above (see Figs. I and 2). 

The distribution function f(x, n, t) depends significantly on the melt cooling rate 
which is not constant over the process and varies significantly at different points within 
the melt thickness. However for points of a melted layer up to 20 Bm in thickness the "fro- 
zen" distribution function has a practically identical form, which implies homogeneity over 
thickness of the structure. 

Figure 5a, b shows calculations defining the melt depth achieved over time on the wall 
surface (material Fe) for various values of q and absence of evaporation (q = 5.106 , 106 , 
0.5.106 W/cm 2, lines 1-3). Figure 5b illustrates the dependence of mean grain size in the 
solidified melt upon melt thickness. For example, for a thermal flux q = 106 W/cm 2 acting 
over t = 5 Dsec on the wall surface a melt thickness AS = i pm can be obtained (Fig. 4a). 
For subsequent solidification of the melt one can expect a structure with mean crystallite 
size n = 6400 atoms or d = 18.5"10 -4 pm. 

Thus, we have presented a mathematical model for the thermal process occurring in a ma- 
terial upon action of a concentrated energy flux with consideration of the kinetics of crys- 
talline phase formation. The expressions obtained permit evaluation of the size of the crys- 
talline phase nuclei in the solidified melt, as well as the degree of its amorphization. 
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VELOCITIES OF ELASTIC WAVES IN CONSOLIDATED GRANULAR MEDIA 

N. A. Golikov and A. D. Zaikin UDC 534.213 

Zaikin[l] proposed a method of calculating the effective moduli of dry consolidated 
granular media on the basis of the solution of the problem of the elastic deformation of an 
individual grain. The model of intersecting spheres (MIS) was used to describe the struc- 
ture of the pore space. A numerical procedure for calculating the velocities of elastic 
waves was also presented. As a result, a functional relationship was established between 
the velocities of longitudinal and transverse waves and the parameters of the pore space: 
porosity f and the product of the specific surface (per unit volume) and mean grain size 

= Sv<D>. Equations were presented for the velocities of the elastic waves in the case 
when the Poisson ratio of the material of the grains o = 0.25. 

In the present study, we use the approach referred to above to study the effect of the 
elastic properties of the solid phase on the effective elastic moduli of a granular medium. 
Results are presented from experimental studies of the structure of the pore space and the 
velocities of ultrasonic waves. These studies were conducted using specially prepared 
three-dimensional models of granular media. 

As was established previously, the dependence of the effective moduli on the elastic 
parameters of the solid phase is determined solely by the Poisson's ratio of the latter. 
In our calculations, it varied within the range 0.05 ~ o ~ 0.45, with increments of 0.05. 
For each value of o, we obtained the dependence of the velocities of the elastic waves on 
porosity and the type of packing of the grains (the number of contacts). Similar relations 
for o = 0.344 are shown below. We used multiple regression analysis to approximate these 
relations with equations of the form 

V p / V p  1 A l l  - -  * = -- A~, Vs/Vs = I -- AJ -- A~. (i) 

The asterisks denote effective elastic parameters of the granular medium. We used nine val- 
ues of o to construct the regression equations for the coefficients of Eq. (i). Approxima- 
tion of the coefficients AI, A2, As, A4 by a cubic parabola gives results which are quite 
satisfactory (mean error no greater than 0.7%): 

A 1 = 0,722 + 0,029a + '  0,303(J 2 - -  0,268o ~, 

A.o = 0,058 + 0 , t23a  - -  0,494o 2 + i , t 6 o  a, 

Aa = 0,685 q- 0,020t~ + 0,05o 2 + 0,t47(~ a, 

A~ = 0,0664 - -  0,0225a -+- 0,0277o -~ - -  0,133a 3. 
(2) 

With the use of Eqs. (i) and (2) to represent numerical results on the velocities of the 
elastic waves, the mean error of the prediction is no greater than 8%. 

Before analyzing the expressions that have been obtained, let us discuss the MIS. The 
geometry of this model is determined by two dimensionless parameters. Since we are using f 
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